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Common VS Rare

* Genotypes:

> Common variants (e.g. MAF=0.05): single marker test;

> Rare variants (e.g. MAF<0.05): test at gene level (e.g. SKAT).

Comchn Variants Rare Variﬂnts
Major allele | | Major allele | |
SNP1 SNP2 SNPm SNP1 SNP2 SNPq SNPmM
A CT AG A CcT CG GG
AC CC AG AA  CC cc GG
AA CcC GG AA CC CC GG
AA  TT GG AA  CC cc GG
A e oG AR CC . cC ... GG
) ' ' ' Minor allele - : . .
Minor allele - . . AA cC cC GG
\(g? I GG \@A cc cc AG
cc AG ‘ I gene
MAF=(# of minor alleles)/2n MAF=(# of minof alleles)/2n
MAF>0.05 (common variant) MAF<0.05 (rare variant)

. Only subset of functional elements include common variants
. Rare variants are more numerous and thus will point to additional loci



Common VS Rare

Genetic Spectrum of Complex Diseases
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Single Marker Test for Rare Variant

e Rare variants are hard to detect

e Rare variants have low frequency that makes single marker
test less powerful

* Rare causal SNPs are hard to identify even with large effect
size



Single Marker Test for Rare Variant

* Disease prevalence ~10%

* Type | error 5x10°

* To achieve 80% power

* Equal number of cases and controls

* Minor Allele Frequency (MAF) = 0.1, 0.01, 0.001
* Required sample size =486, 3545, 34322,



Alternate Tests for Rare Variant
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Alternate Tests for Rare Variant

* Burden Test
* Sequence Kernel Association Test (SKAT)

* Function Linear Model (FLM)

 (Gene-based tests

« How to handle potential high dimension of rare variants in a gene



Alternate Tests for Rare Variant

* Burden Test
* Sequence Kernel Association Test (SKAT)

* Function Linear Model (FLM)



Burden Test

ARTICLE

Methods for Detecting Associations
with Rare Variants for Common Diseases:

Application to Analysis of Sequence Data
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Burden Test

Alternatives to Single Marker Test Collapsing
Method (Burden Test)

 Group rare variants in the same gene/region

 Score each individual
. Presence or absence of rare copy x _ [1 rare variants present
. . 70 otherwise
*  Weight each variant

* Use individual score as a new “genotype”

* Test in a regression framework

Li and Leal (2008) Am J Hum Genet 83:311-321



Burden Test
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New “Genotype” = SNP1 + SNP2 + ... + SNP5
New “Genotype” = W1*SNP1 + W2*SNP2 + ... + W5*SNP5



Burden Test

Power of Burden Test

Single Combined
Variant Test Test

10 variants / all have risk 2 / All have frequency .005 .05 .86
10 variants / all have risk 2 / Unequal Frequencies .20 .85
10 variants / average risk is 2, but varies / frequency .005 A1 .97

* Power tabulated in collections of simulated data
* Combining variants can greatly increase power

* Appropriately combining variants is expected to be key
feature of rare variant studies.



Burden Test

Impact of Null Variants

Single Combined
Variant Test Test

10 disease associated variants .05 .86
10 disease associated variants + 5 null variants 04 70
10 disease associated variants + 10 null variants .03 .55
10 disease associated variants + 20 null variants .03 .33

* Including non-disease variants reduces power

* Power loss is manageable, combined test remains preferable to
single marker tests



Burden Test

Impact of Missing Disease Alleles

Combined

Single
Variant Test

10 disease associated variants

10 disease associated variants, 2 missed
10 disease associated variants , 4 missed
10 disease associated variants , 6 missed

10 disease associated variants, 8 missed

* Missing disease alleles reduces power

* Still better than single marker test

.05
.05
.05
.04
.03

Test
.86
g2
.52
.28
.08



Burden Test

Challenges

* Assume all causal rare variants have the same effect direction

* It is hard to separate causal and null SNPs
* Including all rare variants will dilute the true signals

e Assume the effect size of each rare variant the same



Alternate Tests for Rare Variant

* Burden Test
* Sequence Kernel Association Test (SKAT)

* Function Linear Model (FLM)



Sequence Kernel Association Test (SKAT):
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Sequence Kernel Association Test (SKAT):

Let there be n subjects with g genetic variants. The n X 1 vector of the quantitative trait y:

y=XB+Gy+ce

 Xisann X p covariate matrix,
 fisap X 1 vector containing parameters for the fixed effects (an intercept and p — 1

covariates),
* G isann x g genotype matrix for the g rare genetic variants of interest,

* ypisagq x 1 vector for the random effects of the g genetic variants,
* ¢gisann X 1 vector for the random error.

Y~N(0, TW)
e~N(0, o31)

where W is a predefined g x g diagonal weight matrix for each variant

Thus, the null hypothesis Hj: y = 0 is equivalent to Hy: r = 0, which can be tested
with a variance component score test in the mixed model.



Sequence Kernel Association Test (SKAT):

Q: What makes mixed model

regression model? Var(y)= tGWG’ + o1
A: random variables in

addition to random error.

SKAT test statistic following a mixture of Chi-square distribution is:

— (v — xR $-1 I5-1(v — XR
Q= (y—XB)Z'GWG'Z™(y — XB)

>

where the parameters are estimated under H) (i.e., Hy: T = 0)

different from linear y=XB+Gy+e “linear mixed model”

Called “kernel”.

Linear combination
used here. Could be
more flexible form.

Thus, under Hy: y=XB+ €  “linear regression model, no longer mixed model”
2 =62l

B=(XE1X) XEly

* The “full model” of SKAT is a linear mixed model
» The “null model” for the score test is a linear model




Sequence Kernel Association Test (SKAT):

Under null hypothesis, the variance of residual is

var(y — XB) = 62 — 62X(X'X)"1X’' = P,,.

The statistic Q = 65 4(y — XE)’GWG’(y — Xﬁ) is a quadratic form of (y — XE) and
follows a mixture of chi-square distributions under H,,. Thus,

q
Q~ Z AiXii
i=1
1

1
where 4; is the eigenvalues of the matrix 6; *W2G'PyGW? .



Sequence Kernel Association Test (SKAT):
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Sequence Kernel Association Test (SKAT):

» Kernel Machine (KM) Regression for Linear Mixed Model:

With additional random effects (besides the genetic effects):

Let there be n subjects with g genetic variants. The n X 1 vector of the quantitative

trait y follows a linear mixed model:
y=XB+Gy+u+e

 Xisann X p covariate matrix,

 fisap x 1 vector containing parameters for the fixed effects (an intercept and p — 1
covariates),

* G isann x g genotype matrix for the g genetic variants of interest,

* pisagq x 1 vector for the random effects of the g genetic variants,

 gisann X 1 vector for the random error,

* wuisann x 1 vector for the random effects due to covariates (e.g., relatedness in
families, multivariate traits or time for longitudinal data)



Sequence Kernel Association Test (SKAT):

» Kernel Machine (KM) Regression for Linear Mixed Model:

y=XB+Gy+u+e
Y~N(0, TW)
u~N(0,K)
e~N(0, o31)

where W is a predefined g x g diagonal weight matrix for each variant, and K 1s an n X
n covariance matrix

For a linear mixed model, we use the log-likelihood
1 1 o1
L= —Zlog[Z| - 7 (y ~ XB)'E 7 (y - XP),

where T = var(y) = tGWG’ + K + oZ1. In the log-likelihood, the first term — %logIZI is
fixed and independent of trait y when replacing X with its estimator.



Sequence Kernel Association Test (SKAT):

» Kernel Machine (KM) Regression for Linear Mixed Model:

Take the first derivative

drt

dl 1 1
—STETIGWE') + - (y — XB)ZTIGWG'Z ™ (y — XB),

The first term is fixed and independent of y. We take twice the second term to be derived

as our test statistic Q.
Q= (y—XB) T 'GWG'E™!(y — XB)

Likelihood-Ratio Test : :

InL(a)

where the parameters are estimated under H) (i.e., Hy: 7= 0)

Thus,under Hy: y=XB+u+e¢
2 =K+ 671
B=(XE1X) 'XEly




Sequence Kernel Association Test (SKAT):

» Kernel Machine (KM) Regression for Linear Mixed Model:

Under null hypothesis, the variance of residual is

var(y — XB) = var (y - X(X271X) X'E7ly) = - X(X'T7'X) X' =P,

The statistic Q 1s a quadratic form of (y — Xﬁ) and follows a mixture of chi-square
distributions under H,. Thus,

q
Q~ 2 AiXii
i=1
1

1 - - —_—
where 4, is the eigenvalues of the matrix WzG'E 1P, 2 1GWz .



Sequence Kernel Association Test (SKAT):

> Special case: Family Sequence Kernel Association Test
(famSKAT) for Quantitative Traits for Family Data:

The random variable for familial correlation

y=XB+Gy+u+e  y~N(,T™W)  &~N(0,0%])

y=Xp+Gy+8+e 8~N (0,05 ®)

Father Mother Child
kather @ 1 0 (.51 Father
(b:[ 0 1 0,5‘ Mother

0.5 0.5 1 1 chid

Child

Under the null hypothesis (=0),y =X+ 8 + €




Sequence Kernel Association Test (SKAT):

> Special case: Family Sequence Kernel Association Test
(famSKAT) for Quantitative Traits for Family Data:

We have test statistics:
Q= (y— XB) £ 1GWG'E1(y — XB)
B=(XE1X) 'XEly
)y

= 65 ® + 671

The statistic Q 1s a quadratic form of (y — XE) and follows a mixture of chi-square

distributions
q
Q~ Z AiXii
i=1

1 s - l
where /; is the eigenvalues of the matrix W2G'E 1P, 1GWz .



Sequence Kernel Association Test (SKAT):

> Special case: Multivariate Family Kernel Machine (MF-KM)
regression for Quantitative Traits for Family Data:

GENETICS | INVESTIGATION s

Associating Multivariate Quantitative Phenotypes
with Genetic Variants in Family Samples with a
Novel Kernel Machine Regression Method

Qi Yan,* Daniel E. Weeks," Juan C. Celedén,*' Hemant K. Tiwari,* Bingshan Li,° Xiaojing Wang,**

Wan-Yu Lin,' Xiang-Yang Lou,** Guimin Gao,* Wei Chen,**' and Nianjun Liu*’

*Division of Pulmonary Medicine, Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Pittsburgh, University
of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224, TDepartments of Human Genetics and Biostatistics, Graduate School
of Public Health, University of Pittsburgh, Pennsylvania 15261, *Department of Biostatistics, University of Alabama at Birmingham,
Alabama 35294, §Departments of Molecular Physiology and Biophysics and Neurology, Vanderbilt University Medical Center,
Nashville, Tennessee 37232, **Analytics of Metrics Central, Global QARAC Headquarters, ConvaTec, Inc., Greensboro, North
Carolina 27409, TTInstitute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei,
Taiwan, **Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana 70112, and §§Depar‘[ment of
Public Health Sciences, University of Chicago, lllinois 60637



Sequence Kernel Association Test (SKAT):

> Special case: Multivariate Family Kernel Machine (MF-KM)
regression for Quantitative Traits for Family Data:

We consider a data set containing m individuals and two correlated phenotypes for
illustration. The model with correlation among phenotypes and familial correlation
1s

y=Xp+Gy+h+e

where y is a vector of continuous trait (i.e., Y = (Y11, V12, Y21, Y225 --+» Ym1» Ym2) Where
m 1s the number of samples). h is the random effect of correlated phenotypes
corresponding to the polygenic contribution, and € is the random effect of correlated

phenotypes corresponding to the random environmental contribution.

01 0612 o2, o
h~N 0, q)® 2 e~N 0’ I® E1l E212
0G12 0G2 Or12 Og»p



Sequence Kernel Association Test (SKAT):

> Special case: Multivariate Family Kernel Machine (MF-KM)
regression for Quantitative Traits for Family Data:

Under the null hypothesis (t=0),y =X+ h + ¢

var(y) = ®® < %1 06212) +1® ( & “E;2> _3

Og12 0g2 Og12 Opg2

where ® is twice the m X m kinship matrix obtained from familial relationship and
® is the kronecker product. 6Z;, 05,, Og12, 071, 07, and oy, represent the
polygenic variances of the first and second traits, the polygenic covariance between
the two traits, the environmental variances of the first and second traits, and the

environmental covariance between the two traits.



Sequence Kernel Association Test (SKAT):

> Special case: Multivariate Family Kernel Machine (MF-KM)
regression for Quantitative Traits for Family Data:

We have test statistics:
Q= (y —XB) £-1GWG'E1(y — XB)

B=(XE1X) 'XEly

2 = PR (f\-gl 6:\6212> +1I® (?Ezl 6-E12)

A2
Og12 0g2 Og12 Opg»

The statistic Q 1s a quadratic form of (y — XE) and follows a mixture of chi-square

distributions
q
Q~ Z AiXii
i=1

1 s - l
where /; is the eigenvalues of the matrix W2G'E 1P, 1GWz .



Sequence Kernel Association Test (SKAT-0):

> Balance between burden and SKAT

ARTICLE

Optimal Unified Approach for Rare-Variant

Association Testing with Application to Small-Sample
Case-Control Whole-Exome Sequencing Studies

Seunggeun Lee,! Mary J. Emond,2 Michael J. Bamshad,35 Kathleen C. Barnes,# Mark J. Rieder,>

Deborah A. Nickerson,> NHLBI GO Exome Sequencing Project—ESP Lung Project Team,®
David C. Christiani,&7 Mark M. Wurfel,8 and Xihong Linl*

1Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA; 2Depar’cment of Biostatistics, University of Washington, Seattle,
WA 98195, USA; 3Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; 4Department of Medicine, Johns Hopkins University,
Baltimore, MD 21224, USA; 5Departrnent of Genome Science, University of Washington, Seattle, WA 98195, USA; 6Department of Environmental Health,
Harvard School of Public Health, Boston, MA 02115, USA; 7Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA;
8Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA 98104, USA
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Sequence Kernel Association Test (SKAT-0):

> Balance between burden and SKAT

y=XB+Gy+¢

We still test Hy: ¢ = 0, assume y~N (0, TW%RpW%) instead of y~N (0, tW), where R, =
(1 —p)I + p11'. In SKAT-O, £ and B are calculated under the null hypothesis using the same
approach as in SKAT. The SKAT test statistic is a function of p,

Q,=(y- XE)’f‘lGW%RpW%G’f‘l(y — Xp)
It is a SKAT test when p = 0, and it is a Burden test when p = 1. The statistic Q, is a quadratic
form of y — XP and follows a mixture of chi-square distributions under H,. Thus,

q 2
Qp~ 2j=1 AiX1p>
1 1

e ! 1o
where 4; are the eigenvalues of the matrix W;G'E™'PoX™ " GW? where W, = WzR, W2,

Key: auto search for p.



Sequence Kernel Association Test (SKAT-0):

All Causal Variants Were Deleterious
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Sequence Kernel Association Test (SKAT-0):

50%/50% of Causal Variants Were Protective/Deleterious
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Alternate Tests for Rare Variant

* Burden Test
* Sequence Kernel Association Test (SKAT)

* Function Linear Model (FLM)



Functional Linear Model (FLM):

Genetic
Epidemiology
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Functional Linear Model (FLM):

Fan et al., 2013, for a quantitative trait, we still consider a linear model,

nnnnnn
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Functional Linear Model (FLM):

Fan et al., 2013, for a quantitative trait, we still consider a linear model,

1
yi=Xif+ J G;(t) y(t)dt + ¢;
/
P T N A series of basis functions
Gi(t) =E(Gi(t1), . Gi(tq) ;CI)[cI)’(I)]—lcp(t) of SNP positions

(e.g., B-spline, Fourier)
K;x1




Functional Linear Model (FLM):

Fan et al., 2013, for a quantitative trait we still consider a linear model,

=X/B + G () y®)dt + ¢

SN

Gi(®) = (Gi(tr), -, Gi(tg)) P[PPI B ¥(®) =[8/(O(v1, -, Vi)

IXq K;x1
A series of basis functions
of SNP positions
(e.g., B-spline, Fourier)
IXK

IXK



Functional Linear Model (FLM):

Fan et al., 2013, for a quantitative trait we still consider a linear model,

=X/B + G () y®)dt + ¢

_____________________________________ 7O\

6:0) = (Gi(t), -, Gi(tg) | IO DI BB (O =8 B v, 1)

________________________

IXq K;x1 IXK Kx1

Therefore, after some algebra,

=X;B+Riy+e

Ri = (Gi(ty), ., Gi(tg) ) @[@' @] [ p(1)6' (1) dt

IXK



Functional Lin
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Functional Linear Model (FLM):

Genetic
Epidemiology
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Functional Linear Model (FLM):
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Have single variant association tests been

performed?

 Start with single variant tests

 even though under-powered
* provides a quality check

» Examine genome-wide QQ plots

From Do R, Kathiresan S, Abecasis GR. Exome sequencing and complex disease: practical aspects of
rare variant association studies. Hum Mol Genet. 2012 Oct 15;21(R1):R1-9. Epub 2012 Sep 13.
PubMed PMID: 22983955; PubMed Central PMCID: PMC3459641.



What type of rare variant test to perform?

Group rare variants, and compare to trait distribution

Two major types:

* with effect of all alleles in the same direction
* allowing for alleles with variable effect directions

Use variable threshold implementations

Examine QQ plots (all analyses, combined with single variant
results)

From Do R, Kathiresan S, Abecasis GR. Exome sequencing and complex disease: practical aspects of
rare variant association studies. Hum Mol Genet. 2012 Oct 15;21(R1):R1-9. Epub 2012 Sep 13.
PubMed PMID: 22983955; PubMed Central PMCID: PMC3459641.



What allele frequency threshold to use for

gene based tests?

e [f can’t use variable threshold methods, then use a
variety of frequency cut-offs

» Additional analysis: Examine homozygotes or
compound heterozygotes for deleterious mutations.

From Do R, Kathiresan S, Abecasis GR. Exome sequencing and complex disease: practical aspects of
rare variant association studies. Hum Mol Genet. 2012 Oct 15;21(R1):R1-9. Epub 2012 Sep 13.
PubMed PMID: 22983955; PubMed Central PMCID: PMC3459641.



What variants to include in the rare variant

test?

* Include all missense, splice or stop altering variants, excluding
only synonymous and non-coding variants.

* Focus on subset of variants predicted to have deleterious
consequences.

* Focus on only splice, frame, and stop-altering variants.

From Do R, Kathiresan S, Abecasis GR. Exome sequencing and complex disease: practical aspects of
rare variant association studies. Hum Mol Genet. 2012 Oct 15;21(R1):R1-9. Epub 2012 Sep 13.
PubMed PMID: 22983955; PubMed Central PMCID: PMC3459641.



What approach to correct for multiple

testing?

* Use permutation-based approaches to assess statistical
significance.

* Or proposed rule of thumb: need a p-value less than 5x10-7.

From Do R, Kathiresan S, Abecasis GR. Exome sequencing and complex disease: practical aspects of
rare variant association studies. Hum Mol Genet. 2012 Oct 15;21(R1):R1-9. Epub 2012 Sep 13.
PubMed PMID: 22983955; PubMed Central PMCID: PMC3459641.



Conclusions

* Mixture of risk, neutral, and protective variants
* Probably should not assume all have same direction of effect

* Avoid arbitrary thresholds
e Variable threshold models

* Many different statistics, with differing power under different
conditions

* Sensitivity analyses with a few different methods
* Always good to incorporate measures of data quality

* Model uncertainty

From Do R, Kathiresan S, Abecasis GR. Exome sequencing and complex disease: practical aspects of
rare variant association studies. Hum Mol Genet. 2012 Oct 15;21(R1):R1-9. Epub 2012 Sep 13.
PubMed PMID: 22983955; PubMed Central PMCID: PMC3459641.



