

A COMBINED SEQUENCE KERNEL ASSOCIATION TEST (SKAT) AND ADAPTIVE RANK TRUNCATED PRODUCT (ARTP) POWERFUL METHOD FOR GENETIC PATHWAY ANALYSIS

Qi Yan

Department of Biostatistics, University of Alabama at Birmingham

- <u>Drawbacks of traditional GWAS</u>:
- > 1. Single genetic variants that contribute weak but real effects on disease risks are likely to be missed after taking into account multiple comparison adjustment.
- 2. Single-marker association test cannot handle genetic hierarchy appropriately due to ignoring pathways---genes---SNPs structure.

Advantages of grouping test of SNPs

(e.g. genes---SNPs):

- I. It is able to overcome the barrier of stringent significance level by reducing the number of testing came out.
- 2. It has the potential to improve the power when the joint effect of multiple SNPs is stronger than individual SNPs.
- Sequence Kernel Association Test (SKAT) is one of the popular grouping test methods.

Pathway analysis

(pathways---genes---SNPs):

- I. It is more biologically meaningful than singlemarker association test by incorporating prior biological knowledge.
- 2. It reduces the number of hypotheses being tested and thus relaxing the stringent significance level.
- 3. It could be powerful to detect the joint effect of multiple SNPs.

- <u>A typical pathway analysis</u>:
- Firstly need to predefine sets of SNPs or genes as pathways
- Then use statistical approaches to evaluate the significance of test statistics at pathway level.
- Because of the difficulties of deriving exact distributions of test statistics, most of methods of pathway analysis involve permutation procedure.

A Combined SKAT-ARTP Powerful Method for Genetic Pathway Analysis

Specific aim:

- We propose a powerful pathway analysis approach that combines SKAT and ARTP method. In other words, SKAT is applied to summarize gene-level statistic and ARTP is used to summarize pathwaylevel statistic.
- We propose an optimized set of weights allowing good power for both common and rare variants in SKAT.

Methods (SKAT-ARTP Pathway Analysis Method):

► SKAT (<u>Wu et al., 2011</u>):

We assume an $n \times 1$ vector of the trait **y**. The link function $h(\cdot)$ is used to map linear combination of predictors for observation i, η_i , to the conditional mean of **y** for observation i, μ_i .

$$h(\mu) = \eta = X\beta + G\gamma$$

- 1. X is an $n \times p$ covariate matrix, β is a $p \times 1$ vector representing fixed effects parameters;
- **2. G** is an $n \times q$ genotype matrix for q genetic variants of interest, γ is a $q \times 1$ vector for the random effects of variants;
- The random effects γ_j is assumed to be normally distributed with variance τW_j for variant *j*, so the null hypothesis being tested is H_o: γ=0, which is equivalent to test H_o: τ=0

Specifically, the variance-component score statistics is

$$Q = (y - \hat{\mu})' GWG'(y - \hat{\mu})$$

where $\hat{\mu}$ is the predicted mean of *y* under null hypothesis. In a dichotomous trait case, $\hat{\mu} = \text{logit}^{-1}(X\hat{\beta})$. Here $W = diag(w_1, \dots, w_q)$ contains the weights of the *q* variants. In the matrix notation,

$$Q = [y_1 - \hat{\mu} \quad \cdots \quad y_n - \hat{\mu}]_{1 \times n} \begin{bmatrix} G_{11} \quad \cdots \quad G_{1p} \\ \vdots \quad \ddots \quad \vdots \\ G_{n1} \quad \cdots \quad G_{np} \end{bmatrix}_{n \times p} \begin{bmatrix} w_1 \quad \cdots \quad 0 \\ \vdots \quad \ddots \quad \vdots \\ 0 \quad \cdots \quad w_p \end{bmatrix}_{p \times p} \begin{bmatrix} G_{11} \quad \cdots \quad G_{n1} \\ \vdots \quad \ddots \quad \vdots \\ G_{1p} \quad \cdots \quad G_{np} \end{bmatrix}_{p \times n} \begin{bmatrix} y_1 - \hat{\mu} \\ \vdots \\ y_n - \hat{\mu} \end{bmatrix}_{n \times 1}$$

Under the null hypothesis, Q follows a mixture of chi-square distributions, which can be closely approximated with the computationally efficient Davies method.

A good choice of weights could improve the power. SKAT adapts Common Disease-Rare Variants hypothesis that assumes rare variants are more likely to be causal variants than common variants. A Beta density with parameters $a_1 = 1$ and $a_2 = 25$ is recommended as weight function, $\sqrt{w_j} = Beta(MAF_j; a_1, a_2)$

We proposed the sum of beta density (e.g. $0.5 * Beta(MAF_j; 1, 25)$) and inverse of single marker test p-value (e.g. 1.25/(0.1 + pvalue)) as a better square root of weight for testing both common and rare variants.

> The Adaptive Rank Truncated Product (ARTP) Algorithm (<u>Yu et al., 2009</u>):

- ARTP method is a truncated product method that uses the product of some auto-selected most significant p-values.
- ➢ For combining gene level p-values:
- First, we obtain p-values for each gene on the null hypothesis based on the observed data, denoted as $p_1^{(0)}, \ldots, p_L^{(0)}$, where L is the number of genes in the pathway.
- Second, we permute the phenotypes to generate B datasets under the null hypothesis. Based on the bth permuted dataset, 0<b≤B, we can also obtain the p-values, p₁^(b), ..., p_L^(b), for genes.

In sum, the ARTP algorithm is shown as below:

- Based on p₁^(b), ..., p_L^(b) from gene level test approach, 0≤b≤B (b=0 is for the observed data set), for any given b, calculate the rank truncated product statistics for each candidate truncation point, denoted as W_j^(b) = Π_{i=1}^j p_(i)^(b), 1 ≤ j ≤ L, where p_(i)^(b) is the ranked p-value in the bth permuted dataset (p₍₁₎^(b) is the smallest p-value). Therefore, for the bth permuted dataset, we have W₁^(b), W₂^(b), ..., W_L^(b).
 Based on W_j^(b), 1 ≤ j ≤ L, 0 ≤ b ≤ B, for any given b, apply Ŝ_j^(b) = Σ_{b*=0}^B l(W_j^(b*)≤W_j^(b)) to obtain the corresponding p-values for W_j^(b).
- 3. For any b, let $MinP^{(b)} = min_{1 \le j \le L} \hat{S}_j^{(b)}$, $0 \le b \le B$. The adjusted p-value for the adaptive rank truncated product statistic $MinP^{(0)}$ is estimated as $\frac{\sum_{b=0}^{B} I(MinP^{(b)} \le MinP^{(0)})}{B+1}$ and it is the pathway p-value.

SKAT-ARTP Method:

Powerful and efficient SKAT algorithm is used first to obtain genelevel p-values for all genes within the pathway. ARTP algorithm is then applied to evaluate the association between the pathway and disease while excluding genes that do not affect phenotypes.

• <u>Other Pathway Analysis Approaches:</u>

- ARTP-ARTP (<u>Yu et al., 2009</u>): both gene-level and pathway-level pvalues are evaluated by ARTP;
- <u>Individual SKAT</u>: all SNPs in one pathway as a group, ignore genelevel information;

Simulation study:

- Null gene sets
- Type I Diabetes genotype dataset from WTCCC.
- 2000 samples.
- SNPs assigned to a gene if they are located within the flank of 5kb.
- Overlapped genes were deleted.
- Genes assigned to pathways in KEGG based on HUGO Gene symbols.
- At the end, 6 pathways including 99 genes and 797 SNPs were selected as genotypes
- Simulated 1000 sets of phenotypes and hence 1000 simulated datasets were generated.

The dichotomous phenotypes were generated via the model:

 $logitP(y = 1) = \alpha_0$

where α_0 was determined to set the prevalence to 5%.

Causal gene sets

The dichotomous phenotypes were generated via the model:

 $logitP(y = 1) = \alpha_0 + 0.5X_1 + 0.5X_2 + \beta_1G_1 + \beta_2G_2 + \dots + \beta_pG_p$

where X_1 is a continuous covariate generated from a standard normal distribution, X_2 is a dichotomous covariate from a Bernoulli distribution with probability of 0.5, $G_1, G_2, ..., G_p$ are the genotypes for causal SNPs and $\beta_1, \beta_2, ..., \beta_p$ are log ORs for the causal SNPs. α_0 was determined as described in null gene set. $\beta_1, \beta_2, ..., \beta_p$ were set to $c \lfloor log_{10}MAF_j \rfloor$ in order to assign large effects to rare variants, and c=0.8.

First scenario is there are totally 6 causal variants and each one is from one pathway;

Second scenario is the number of causal SNPs is proportional to the length of the pathway.

Simulation Study Results:

(W2) indicates that the weights for each SNP used in SKAT are $[1.25/(0.1+p-value) + Beta(MAF; 1, 25)]^2$, where p-value is from single marker test; No specification indicates that SKAT uses default weights (Beta function with $a_1=1$ and $a_2=25$). Type I error rate

For the average type I error rate over all six pathways, SKAT-ARTP is 0.0508, individual SKAT is 0.0537, SKAT-ARTP(W2) is 0.0527, SKAT(W2) is 0.0478 and ARTP-ARTP is 0.0522.

Power of 6 causal SNPs at α=0.05

Power of 6 causal SNPs at α =0.05, β_i = 0.8 $|log_{10}MAF_j|$

Power of 6 causal SNPs at α =0.01

Power of 6 causal SNPs at α =0.01, β_i = 0.8 $|log_{10}MAF_j|$

Power of 12 causal SNPs at α =0.05

Power of 6 causal SNPs at α =0.05, β_i = 0.8 $|log_{10}MAF_j|$

Power of 12 causal SNPs at α =0.01

Power of 6 causal SNPs at α =0.01, β_i = 0.8|log₁₀MAF_i|

Real Data Results:

Application to Wellcome Trust Case Control Consortium Bipolar Disorder dataset

1998 cases and 1504 controls 10000 permutations

Pathway name	Total genes in	Raw	Adjusted
	the pathway	p-value	p-value
Cation channel activity	91	9.99e-5	3.00e- 4
Gated channel activity	87	9.99e-5	3.00e-4
Metal ion transmembrane transporter activity	110	9.99e-5	3.00e-4

Questions

Contact information

E-mail: kid1412@uab.edu Cell phone: 205-396-6942