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Motivation 
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• This study is motivated by the work (R01 HL117191 and R01 HL079966) 

on genetics, epigenetics and asthma in Puerto Rican children. 

SNPs 

(0, 1, 2) 

RNA expression 

(continuous) 

DNA methylation 

(continuous) 

• It has been reported that SNPs, DNA methylation and RNA expression are 

associated with childhood asthma individually. However, some genes may 

have weak individual effects that are hard to detect, but the joint effect is 

detectable. 



Aim 

• To develop novel statistical approaches for testing the overall effect of SNPs, 

DNA methylation and RNA expression. 

 

 The developed omnibus (i.e., overall) tests help us identify additional 

genes that have weak but real effects of the three factors on asthma 

related phenotypes in Puerto Rican children. These genes could be missed 

in the one factor test. 
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Methods 
 1. Test gene-level effects of SNPs, DNA methylation and RNA 

expression separately using Kernel Machine (KM) regression: 
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Use SNPs for illustration: let there be n subjects with q genetic variants. The n × 1 

vector of the continuous trait y follows a linear model:  

• X is an n × p covariate matrix, 

•  β is a p × 1 vector containing parameters for the fixed effects (an intercept and p – 1 

covariates), 

• G is an n × q genotype matrix for the q genetic variants of interest,  

• γ is a q × 1 vector for the random effects of the q genetic variants,  

• ε is an n × 1 vector for the random error, 

𝐲 = 𝐗𝛃 + 𝐆𝛄 + 𝛆 

𝛄~𝑁 0, τ𝐖  

𝛆~𝑁 0, σE
2𝐈  

where W is a predefined q × q diagonal weight matrix for each variant 

H0: τ = 0 

when the phenotypes are binary, y follows a logistic model: 

logit 𝑃 𝐲 = 𝟏 = 𝐗𝛃 + 𝐆𝛄 
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Methods 
 1. Test gene-level effects of SNPs, DNA methylation and RNA 

expression separately using Kernel Machine (KM) regression: 

Following the same rationale as in the derivation of the SKAT score statistic [1], 

the test statistic is: 

Continuous trait:  Binary trait:  

Q = 𝐲 − 𝐗𝛃 
′
𝐆𝐖𝐆′ 𝐲 − 𝐗𝛃 /𝜎 𝐸

2 Q = 𝐲 − 𝝁 ′𝐆𝐖𝐆′ 𝐲 − 𝝁  

Under H0: Under H0: 𝐲 = 𝐗𝛃 + 𝛆 logit 𝑃 𝐲 = 𝟏 = 𝐗𝛃 

The estimates: The estimates: 

𝚺 = 𝜎 𝐸
2𝐈 

𝛃 = 𝐗′𝐗 −1𝐗′𝐲 

𝐏𝟎 = 𝐈 − 𝐗 𝐗′𝐗 −1𝐗′ 

𝛃 = 𝐗′𝚺 −1𝐗
−1
𝐗′𝚺 −1𝐲 

𝝁 = logit−1 𝐗𝛃  

𝚺 = 𝑑𝑖𝑎𝑔 𝝁 ∙ 1 − 𝝁  

𝐏𝟎 = 𝚺 − 𝚺 𝐗 𝐗′𝚺 𝐗
−1
𝐗′𝚺  

1. Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X: Rare-variant association testing for sequencing data with the sequence 

kernel association test. American journal of human genetics 2011;89:82-93. 
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Methods 
 1. Test gene-level effects of SNPs, DNA methylation and RNA 

expression separately using Kernel Machine (KM) regression: 

Continuous trait:  Binary trait:  

Q = 𝐲 − 𝐗𝛃 
′
𝐆𝐖𝐆′ 𝐲 − 𝐗𝛃 /𝜎 𝐸

2 Q = 𝐲 − 𝝁 ′𝐆𝐖𝐆′ 𝐲 − 𝝁  

The statistic Q is a quadratic form and follows a mixture of chi-square distributions 

under H0. Thus, 

Q~ 𝜆𝑖𝜒1,𝑖
2

𝑞

𝑖=1

 

where 𝜆𝑖 are the eigenvalues of the matrix 𝐏𝟎
1

2𝐆𝐖𝐆′𝐏𝟎
1

2 for both continuous and 

binary traits. The p-values can be calculated by numerical algorithms, such as 

Davies’ method. 

Analogously, the gene-level effects of DNA methylation and RNA expression can 

be tested by replacing 𝐆𝛄 with 𝐌𝛒 and 𝐄γ 



 2. Modified Fisher’s method for combining gene-level 

effects of SNPs, DNA methylation and RNA expression: 
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Methods 

• Aim to have one single p-value to represent the significance of a gene; 

• Use Fisher’s method to combine three p-values (SNPs, DNA methylation and RNA 

expression) to one, but p-values may not be independent; 

• Consider a Satterthwaite approximation by approximating a scaled T statistic with a 

new chi-square distribution: 

𝑐𝑇 ≈ 𝜒𝑣
2, where  𝑐 =

𝑣

𝐸 𝑇
 , 𝑣 = 2

𝐸 𝑇 2

Var 𝑇
,  

𝐸 𝑇 = 𝐸 −2 ln 𝑝𝑖
𝑤

𝑖=1
= 2𝑤, 

Var 𝑇 = var −2 ln 𝑝𝑖
𝑤

𝑖=1
= 4𝑤 + 2 cov −2ln 𝑝𝑖 , −2ln 𝑝𝑗

𝑖<𝑗

 

• where w = 3 for SNPs, DNA methylation and RNA expression. 

• The covariance part takes the correlations of p-values into account and can be 

empirically estimated by perturbations. 
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 3. Optimal test for the gene-level effects of SNPs, DNA 

methylation and RNA expression using perturbations: 

Methods 

• If the disease risk only depends on SNPs and the model with SNPs, RNA 

expression and DNA methylation is used, then the testing power will lose.  

• Since in reality we do not know the underlying true disease model, it is 

difficult to choose the correct model.  

• Thus, it is desirable to develop a method accommodating all possible disease 

models to maximize the power.  

• This can be achieved by using the minimum p-value of all possible models as 

a new test statistic.  

• Then, perturbation can be used to calculate the final p-value.  
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 3. Optimal test for the gene-level effects of SNPs, DNA 

methylation and RNA expression using perturbations: 

Methods 

The intuition behind the perturbation:  

For continuous phenotypes, with large n, under H0 the 𝐲 − 𝐗𝛃 /𝜎 𝑬 is approximately 

standard normal. Then each Q𝑑 = 𝐲 − 𝐗𝛃 
′
𝐆𝐖𝐆′ 𝐲 − 𝐗𝛃 𝜎 𝐸

2  is essentially 

comprised of a vector of standard normal variables sandwiching a square matrix. The 

vectors of normal values are the same across all Q1, ⋯ Q𝑘. Thus, we can perturb 

each Q𝑑 by replacing 𝐲 − 𝐗𝛃 /𝜎 𝑬 with a new, common vector of normal values to 

generate new score statistics.  
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 3. Optimal test for the gene-level effects of SNPs, DNA 

methylation and RNA expression using perturbations: 

Methods 

Perturbation:  
1. Calculate the p-values for SNPs (G), DNA methylation (M) and RNA expression (E) separately (i.e., 

𝑝𝐺
(0)

, 𝑝𝑀
(0)

, and 𝑝𝐸
(0)

) by KM regression. Observed individual p-values 

2. For l ∈ G, M and E, compute 𝚲𝑙 = 𝑑𝑖𝑎𝑔 𝜆𝑙,1, ⋯ , 𝜆𝑙,𝑚𝑙 , and 𝐕𝑙 = 𝒗𝑙,1, ⋯ , 𝒗𝑙,𝑚𝑙  where 𝜆𝑙,1 ≥ 𝜆𝑙,2 ≥ ⋯ ≥

𝜆𝑙,𝑚𝑙 are the 𝑚𝑙 positive eigenvalues of 𝐏𝟎
1

2𝐆𝐖𝐆′𝐏𝟎
1

2 with corresponding eigenvectors 𝒗𝑙,1,⋯ , 𝒗𝑙,𝑚𝑙. 

3. Generate 𝒓 𝑏 = 𝑟1
𝑏 , ⋯ , 𝑟𝑛

𝑏
′
 with each 𝑟𝑗

𝑏 ~𝑁 0, 1 . 

4. For l ∈ G, M and E, rotate 𝒓 𝑏  using the eigenvectors to generate 𝒓𝑙
𝑏 = 𝐕𝑙

′𝒓 𝑏 . 

5. Compute Q𝑙
(𝑏)

= 𝒓𝑙
𝑏 ′

𝚲𝑙𝒓𝑙
𝑏

 for each l and obtain a corresponding p-value, 𝑝𝑙
(𝑏)

.  

6. Repeat (3)-(5) B times to obtain 𝑝𝐺
(1)
, 𝑝𝐺

(2)
, ⋯ , 𝑝𝐺

(𝐵)
, 𝑝𝑀

(1)
, 𝑝𝑀

(2)
, ⋯ , 𝑝𝑀

(𝐵)
 and 𝑝𝐸

(1)
, 𝑝𝐸

(2)
, ⋯ , 𝑝𝐸

(𝐵)
 for some large 

number B.                                       Perturbation individual p-values 

7. Calculate the covariance between 𝑝𝐺, 𝑝𝑀 and 𝑝𝐸by using 𝑝𝐺
(𝑏)

, 𝑝𝑀
(𝑏)

, and 𝑝𝐸
(𝑏)

 for b ∈ 0, 1,…, B.  

8. Calculate the joint p-values of SNPs, DNA methylation and RNA expression (i.e., for b ∈ 0, 1,…, B, 

𝑝𝐺𝑀
(𝑏)

, 𝑝𝐺𝐸
(𝑏)

, 𝑝𝑀𝐸
(𝑏)

, and 𝑝𝐺𝑀𝐸
(𝑏)

) by modified Fisher’s method. The p-values for all possible disease models  

9. For l* ∈ G, M, E, GM, GE, ME, and GME; b ∈ 0, 1,…, B, set 𝑝(𝑏) = min1≤𝑙∗≤𝐿∗𝑝𝑙∗
(𝑏)

. 

10. The final p-value for significance is estimated as  

𝑝 = 𝐵−1  𝐼 𝑝(𝑏) ≤ 𝑝(0)
𝐵

𝑏=1

 



 Simulation Studies 
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Methods 

We simulated two main settings:  

1. G, M and E are independent with each other:  
(1.1) continuous traits and no causal factors (denoted as null_c_ind),  

(1.2) continuous traits and G is causal (denoted as causal_G_c_ind),  

(1.3) continuous traits and G and M are causal (denoted as causal_GM_c_ind),  

(1.4) continuous traits and G, M and E are causal (denoted as causal_GME_c_ind),  

(1.5) binary traits and no causal factors (denoted as null_b_ind),  

(1.6) binary traits and G is causal (denoted as causal_G_b_ind),  

(1.7) binary traits and G and M are causal (denoted as causal_GM_b_ind),  

(1.8) binary traits and G, M and E are causal (denoted as causal_GME_b_ind) 

2. G and E are correlated, but independent with M:  

(2.1) continuous traits and no causal factors (denoted as null_c_cor),  

(2.2) continuous traits and G is causal (denoted as causal_G_c_cor),  

(2.3) continuous traits and G and M are causal (denoted as causal_GM_c_cor. When the 

causal SNPs in G are correlated with E, G and M causal is similar to G, E and M causal),  

(2.4) binary traits and no causal factors (denoted as null_b_cor),  

(2.5) binary traits and G is causal (denoted as causal_G_b_cor),  

(2.6) binary traits and G and M are causal (denoted as causal_GM_b_cor).  



Results 

 Simulation of the Type I Error Rate: 
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Samples with independent G, M and E Samples with G and E correlated 



 Statistical Power Comparison: 
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Results 

Samples with independent G, M and E Samples with G and E correlated 

α=0.05 

α=0.05 

α=0.01 

α=0.01 

α=0.05 

α=0.05 

α=0.01 

α=0.01 



 Analysis of Genome Wide Childhood Asthma Data: 

• In the final analysis, we used 1,223 subjects; 

• We used the 8,254 genes with all SNP, DNA methylation and RNA 

expression information  
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Results 
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 Analysis of Genome Wide Childhood Asthma Data: 

Results 

• The GSDMB gene could be served as a positive control in asthma genetic studies. In the optimal test, the 

significance of GSDMB (P = 2×10-5) was mainly driven by the genetic effect (P = 7.54×10-6).  

• The XPC gene (P = 8×10-6) was suggestively associated with asthma driven by the methylation effect (P = 

3.14×10-6). The XPC gene was reported to play an important role in lung carcinogenesis and air pollution 

induced pathogenesis of the inflammatory disease bronchitis. 



Summary 

 Developed an approach to test the overall gene effects from multiple omics 

data using a modified Fisher’s method. 

 Further extended this approach to consider all possible disease models 

using perturbation. 
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