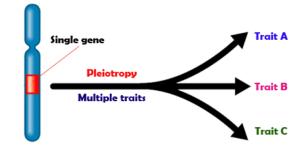
Associating Multivariate Quantitative Phenotypes with Genetic Variants in Family Samples with a Novel Kernel Machine Regression Method

Qi Yan

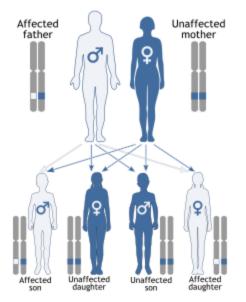
Department of Pediatrics, University of Pittsburgh Children's Hospital of Pittsburgh of UPMC

June 13th, 2016

Motivation



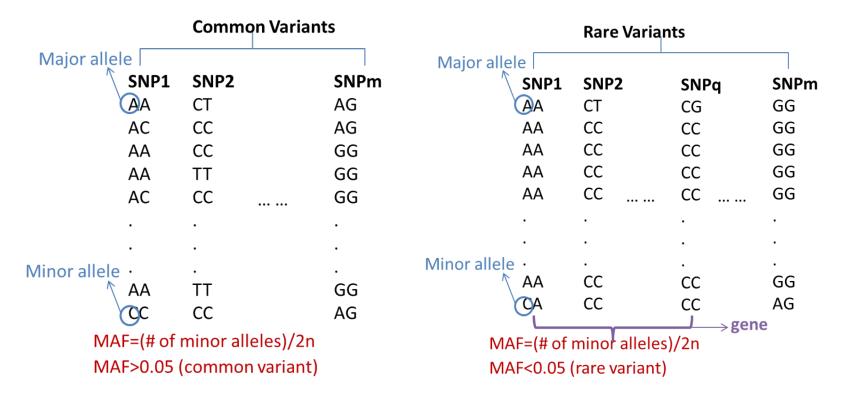
- Phenotypes:
 - > Genetic studies have been conducted to collect multiple correlated phenotypes for one complex disease. Jointly modeling multiple phenotypes can improve the statistical power [Sivakumaran S, et al. AJHG. 2011];
 - Family based designs have been widely used [Spielman RS, et al. AJHG. 1993].
 Appropriately handling familial correlation can retain Type I error rate;



http://dragonflyissuesinevolution13.wikia.com/wiki/Pleiotropy http://en.wikipedia.org/wiki/Hereditary_hemorrhagic_telangiectasia

Motivation

- Genotypes:
 - > Common variants (e.g. MAF≥0.05): single marker test;
 - > Rare variants (e.g. MAF<0.05): test at gene level (e.g. SKAT).



Aims

• Association test between multiple quantitative phenotypes and genes in family samples

> Rare variants are assigned into genes;

> Family structure is considered;

> Correlated quantitative phenotypes are tested simultaneously.

Kernel Machine (KM) Regression for Linear Mixed Model:

Let there be *n* subjects with *q* genetic variants. The $n \times 1$ vector of the quantitative trait *y* follows a linear mixed model:

$$y = X\beta + G\gamma + u + \epsilon$$

- **X** is an $n \times p$ covariate matrix,
- β is a $p \times 1$ vector containing parameters for the fixed effects (an intercept and p-1 covariates),
- **G** is an $n \times q$ genotype matrix for the q genetic variants of interest,
- γ is a $q \times 1$ vector for the random effects of the q genetic variants,
- $\boldsymbol{\varepsilon}$ is an $n \times 1$ vector for the random error,
- u is an $n \times 1$ vector for the random effects due to covariates (e.g., correlation between phenotypes or relatedness in families)

 $\begin{aligned} \mathbf{\gamma} \sim N(\mathbf{0}, \mathbf{\tau} \mathbf{W}) & H_0: \mathbf{\tau} = \mathbf{0} \\ \mathbf{u} \sim N(\mathbf{0}, \mathbf{K}) \\ \mathbf{\varepsilon} \sim N(\mathbf{0}, \sigma_{\mathrm{E}}^2 \mathbf{I}) \end{aligned}$

where W is a predefined $q \times q$ diagonal weight matrix for each variant, and K is an $n \times n$ covariance matrix

> Kernel Machine (KM) Regression for Linear Mixed Model:

 $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{G}\boldsymbol{\gamma} + \mathbf{u} + \boldsymbol{\varepsilon}$ $\boldsymbol{\gamma} \sim N(\mathbf{0}, \tau \mathbf{W})$

For the linear mixed model, the log likelihood is

$$l = C - \frac{1}{2} \log|\mathbf{\Sigma}| - \frac{1}{2} (\mathbf{y} - \mathbf{X}\mathbf{\beta})' \mathbf{\Sigma}^{-1} (\mathbf{y} - \mathbf{X}\mathbf{\beta})$$
$$\mathbf{\Sigma} = \mathbf{\tau} \mathbf{G} \mathbf{W} \mathbf{G}' + \mathbf{K} + \sigma_{\mathrm{E}}^{2} \mathbf{I}$$

To derive the score test for H_0 : $\tau = 0$, we take the first derivative with respect to τ

Kernel Machine (KM) Regression for Linear Mixed Model:

Under the null hypothesis, the linear mixed model is $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{u} + \boldsymbol{\epsilon}$, and the estimates are

$$\widehat{\boldsymbol{\Sigma}} = \widehat{\mathbf{K}} + \widehat{\sigma}_E^2 \mathbf{I}$$
$$\widehat{\boldsymbol{\beta}} = \left(\mathbf{X}' \widehat{\boldsymbol{\Sigma}}^{-1} \mathbf{X} \right)^{-1} \mathbf{X}' \widehat{\boldsymbol{\Sigma}}^{-1} \mathbf{y}$$

Replacing the variance components with their maximum likelihood estimators (MLEs), we have

$$\mathbf{Q} = \left(\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}}\right)'\widehat{\boldsymbol{\Sigma}}^{-1}\mathbf{G}\mathbf{W}\mathbf{G}'\widehat{\boldsymbol{\Sigma}}^{-1}\left(\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}}\right)$$

as the test statistic. Under the null hypothesis, the variance of the residual is: $Var(\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}}) = \mathbf{P}_0$

The statistic Q is a quadratic form of $\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}}$ and follows a mixture of chi-square distributions under H_0 . Thus,

 $Q \sim \sum_{i=1}^{q} \lambda_i \chi_{1,i}^2$ where λ_i are the eigenvalues of the matrix $\mathbf{W}^{\frac{1}{2}} \mathbf{G}' \widehat{\boldsymbol{\Sigma}}^{-1} \mathbf{P}_0 \widehat{\boldsymbol{\Sigma}}^{-1} \mathbf{G} \mathbf{W}^{\frac{1}{2}}$

Kernel Machine Regression for Quantitative phenotypes in Family Data (MF-KM):

Under the null hypothesis,

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{h} + \boldsymbol{\varepsilon}$$

- y is a vector of quantitative trait (i.e., y = (y11, y12, y21, y22, ..., ym1, ym2) where m is the number of individuals),
- $X\beta$ is the fixed effects of covariates,
- **h** is the random effect of correlated phenotypes corresponding to the polygenic contribution,
- ε is the random effect of correlated phenotypes corresponding to the random environmental contribution.

$$\operatorname{Var}(\mathbf{h}) \qquad \operatorname{Var}(\mathbf{\epsilon})$$

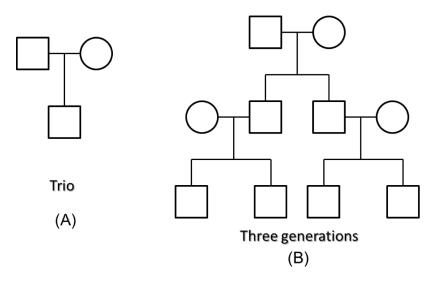
$$\operatorname{Var}(\mathbf{y}) = \mathbf{\Phi} \bigotimes \begin{pmatrix} \sigma_{G1}^2 & \sigma_{G12} \\ \sigma_{G12} & \sigma_{G2}^2 \end{pmatrix} + \mathbf{I} \bigotimes \begin{pmatrix} \sigma_{E1}^2 & \sigma_{E12} \\ \sigma_{E12} & \sigma_{E2}^2 \end{pmatrix} = \mathbf{\Sigma}$$

$$\bigwedge_{\text{kinship}} \bigwedge_{\text{polygenic variances}} \operatorname{environmental variances}$$

Simulation Studies

Genotypes:

- Trios:
 - > One genotype dataset = $300 \text{ trios} \times 30 \text{ rare variants};$
 - > Total = 100 genotype datasets (1000 sets of phenotypes for each set of genotypes).
- Three-generation families:
 - > One genotype dataset = 100 families × 30 rare variants;
 - > Total = 100 genotype datasets (1000 sets of phenotypes for each set of genotypes).



Simulation Studies

Phenotypes:

> Type I error rate: 1000 sets of phenotypes for each genotype dataset (independent);

$$\mathbf{y}_i = 0.05 \cdot \mathbf{X}_{1i} + 0.5 \cdot \mathbf{X}_{2i} + \mathbf{e}_i$$

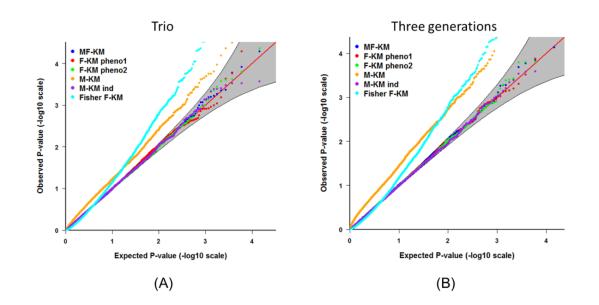
$$\operatorname{Var}(\mathbf{y}_{i}) = \mathbf{\Phi}_{i} \otimes \begin{pmatrix} \sigma_{G1}^{2} & \sigma_{G12} \\ \sigma_{G12} & \sigma_{G2}^{2} \end{pmatrix} + \mathbf{I}_{3 \times 3} \otimes \begin{pmatrix} \sigma_{E1}^{2} & \sigma_{E12} \\ \sigma_{E12} & \sigma_{E2}^{2} \end{pmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0.5 \\ 0 & 1 & 0.5 \\ 0.5 & 0.5 & 1 \end{bmatrix} \otimes \begin{pmatrix} 1 & 0.8 \\ 0.8 & 1 \end{pmatrix} + \mathbf{I}_{3 \times 3} \otimes \begin{pmatrix} 1 & 0.8 \\ 0.8 & 1 \end{pmatrix}$$

Power: 1000 sets of phenotypes for each genotype dataset (Causal variants(+/-) = 30%/0%; 20%/10%; 20%/0%; 13%/7%).

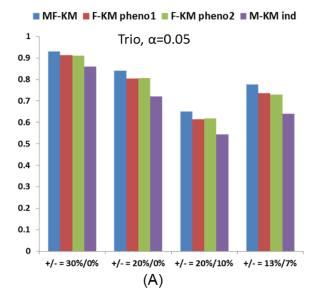
$$\mathbf{y}_i = 0.05\mathbf{X}_{1i} + 0.5\mathbf{X}_{2i} + \mathbf{\beta}_1\mathbf{G}_1 + \mathbf{\beta}_2\mathbf{G}_2 + \dots + \mathbf{\beta}_k\mathbf{G}_k + \mathbf{e}_i$$

> Simulation of the Type I Error Rate:

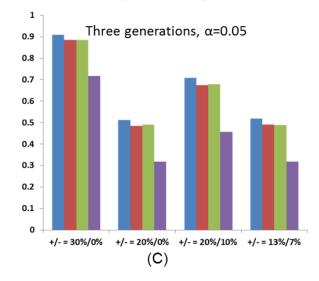
		α=0.05	α=0.01	α=0.005	α=0.001
	MF-KM	0.0497	0.0108	0.0051	0.0014
Trios	F-KM pheno1	0.0511	0.0113	0.0057	0.0007
	F-KM pheno2	0.0473	0.0103	0.0051	0.0012
	M-KM	0.0861	0.0211	0.0125	0.0031
	M-KM ind	0.0497	0.0108	0.0047	0.0011
	Fisher F-KM	0.0796	0.0285	0.0192	0.0072
Three generations	MF-KM	0.0503	0.0105	0.0049	0.0010
	F-KM pheno1	0.0519	0.0104	0.0049	0.0010
	F-KM pheno2	0.0496	0.0104	0.0051	0.0010
	M-KM	0.1270	0.0384	0.0222	0.0062
	M-KM ind	0.0495	0.0094	0.0051	0.0011
	Fisher F-KM	0.0830	0.0292	0.0200	0.0078

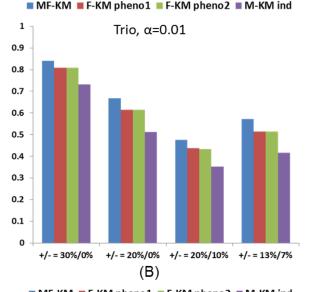


> Statistical Power Comparison:



■ MF-KM ■ F-KM pheno1 ■ F-KM pheno2 ■ M-KM ind

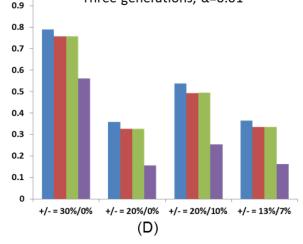




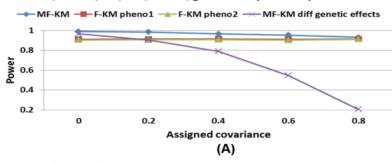
■ MF-KM ■ F-KM pheno1 ■ F-KM pheno2 ■ M-KM ind

Three generations, α =0.01

1

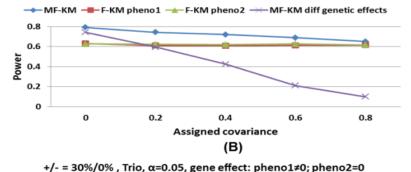


> Statistical Power Comparison:

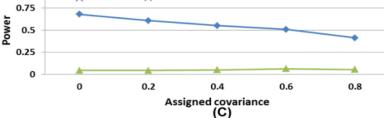


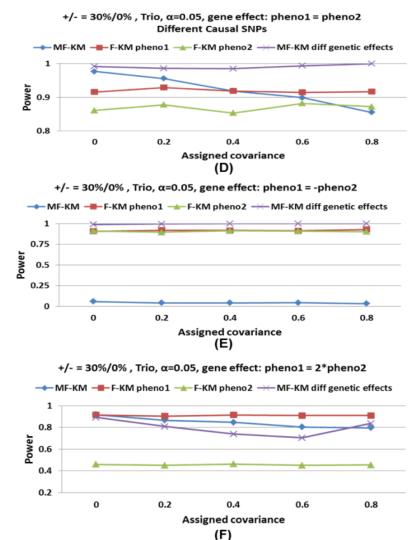
+/- = 30%/0%, Trio, α =0.05, gene effect: pheno1 = pheno2

+/- = 20%/10%, Trio, α =0.05, gene effect: pheno1 = pheno2



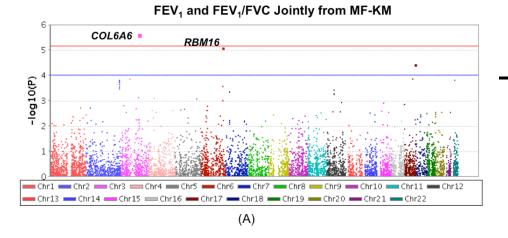
→ MF-KM → F-KM pheno1 → F-KM pheno2 → MF-KM diff genetic effects

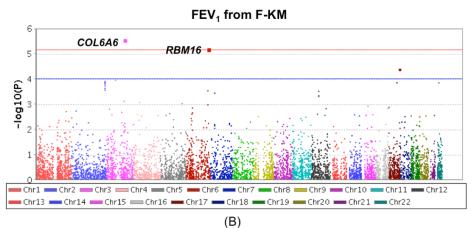


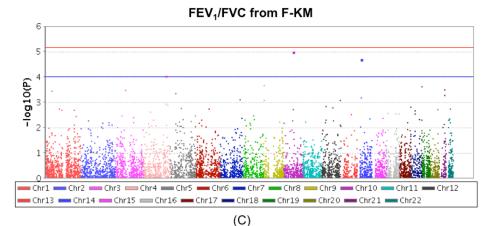


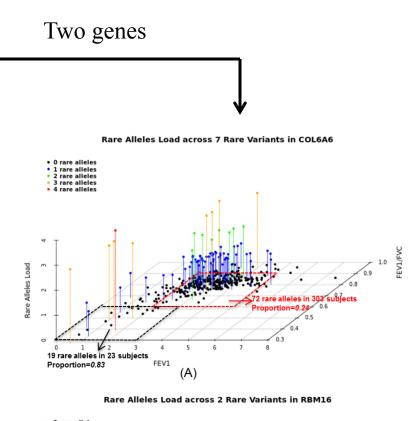
> Analysis of Genome Wide Lung Function Data:

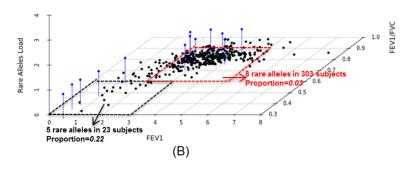
- 579 subjects, including 316 samples from 13 families;
- 658,502 SNPs were genotyped, where 67,121 are rare variants (MAF<0.05);
- Assigned rare variants to a gene if they are located within a 5kb flank;
- 7,064 genes were used in the analysis;
- Carried out gene-based genome wide association tests of the correlated lung function phenotypes FEV1 (Forced Expiratory Volume in One Second) and FEV1/FVC (Forced Vital Capacity) ratio using MF-KM adjusted for age, gender and height.











Summary

- Developed the MF-KM statistic using a linear mixed model framework to analyze multivariate data with quantitative traits in family-based studies.
- MF-KM retains the correct Type I error rate, and achieves the best power performance.
- The software is available (http://www.pitt.edu/~qiy17/Softwares.html).

Acknowledgements

University of Pittsburgh

Dr. Wei Chen Dr. Juan C. Celedón Dr. Daniel E. Weeks

University of Alabama at Birmingham

Dr. Nianjun Liu Dr. Hemant K. Tiwari

- Vanderbilt UniversityDr. Bingshan Li
- National Taiwan University Dr. Wan-Yu Lin
- Tulane UniversityDr. Xiang-Yang Lou
- University of ChicagoDr. Guimin Gao
- Convatec Inc