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Neural Networks
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Activation function
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ReLU

R(z) =max(0, z)‘

» Used to increase non-linearity of the network without affecting receptive

fields of conv layers

* Prefer ReLU, results in faster training

» LeakyRelLU addresses the vanishing

Other types:

Leaky ReLU, Randomized Leaky RelLU,

gradient problem

Parameterized ReLU Exponential

Linear Units (ELU), Scaled Exponential Linear Units Tanh, hardtanh,

softtanh, softsign, softmax, softplus...
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Neural Networks
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H(p,q) = — Y p(=) logg(z)
Binary case — ylogg} n— (1 = y) log(l — @)

General case — Z pi log q;
1

« L1,L2loss

« Cross-Entropy loss (works well for classification, e.g., image classification)

 Hinge Loss

* Huber Loss, more resilient to outliers with smooth gradient

* Minimum Squared Error (works well for regression task, e.g., Behavioral
Cloning)



Gradient descent
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We want to start with random parameters and make our
parameters better and better gradually as an iterative
manner. Gradient descent is:

d
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Gradient descent
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Back propagation
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Convolutional Neural Networks
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Convolutional layer

32x32x3 image -> preserve spatial structure

32 height

32 width

3 depth



Convolutional layer

32x32x3 image

5x5x3 filter

32

Convolve the filter with the image
l.e. “slide over the image spatially,
computing dot products”

32
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Convolutional layer

V

__— 32x32x3 image
ox5x3 filter w

—

™~ 1 number:

32

the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

wlz +b
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Convolutional layer

activation map

__— 32x32x3 image
5x5x3 filter

V
=0

32

convolve (slide) over all
spatial locations




Convolutional layer

consider a second, green filter

___— 32x32x3 image activation maps
5x5x3 filter

V
=

32

convolve (slide) over all
spatial locations
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Convolutional layer

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

32

Convolution Layer

32

3

We stack these up to get a “new image” of size 28x28x6!

19



Convolutional layer

32

32

CONYV,
RelLU
e.g.6
ox5x3
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Convolutional layer

32

32

CONYV,

RelLU
e.g. 6
BXoX3
filters

CONYV,

RelLU
e.g. 10
5x5x6
filters

CONV,
RelLU
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Convolutional layer

HECSINEEEONCITAFRERE SRS TISNEREE SRS
one filter => _
one activation map example 5x5 filters

(32 total)

We call the layer convolutional
because it is related to convolution
of two signals:

fleyleglayl = XY flnnl-glx—n.y—n,]

ny=—00 N, =—00 T

elementwise multiplication and sum of
a filter and the signal (image)

Figure copyright Andrej Karpathy.
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Convolutional layer

A closer look at spatial dimensions:

activation map

___— 32x32x3 image
5x5x3 filter

=

32

convolve (slide) over all
spatial locations
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Convolutional layer

A closer look at spatial dimensions:

7

7X7 input (spatially)
assume 3x3 filter
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Convolutional layer

7X7 input (spatially)
assume 3x3 filter




Convolutional layer

7X7 input (spatially)
assume 3x3 filter




Convolutional layer

7X7 input (spatially)
assume 3x3 filter




Convolutional layer

7X7 input (spatially)
assume 3x3 filter

=> 5x5 output
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Pooling layer

* makes the representations smaller and more manageable
« operates over each activation map independently:

204x224x64
a 112x112x64
pool I/A'ﬂ

> W=l 112
224 downsampling
112

224
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Single depth slice

MAX POOLING

11124
5|6 |7 |8
3 | 2 O
112 |3 ]| 4

Pooling layer

max pool with 2x2 filters

and stride 2

>




Frameworks

Deep learning framework search interest

——— TensorFlow

Q $Deep Learning
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Real study: AMD

namre, ] ARTICLES
machine inte lgeﬂce https://doi.org/10.1038/542256-020-0154-9

") Check for updates

Deep-learning-based prediction of late age-related
macular degeneration progression

Qi Yan®'7>2, Daniel E. Weeks©23, Hongyi Xin', Anand Swaroop©*, Emily Y. Chew®, Heng Huang®,
Ying Ding ®37% and Wei Chen ®1"2375<

Both genetic and environmental factors influence the etiology of age-related macular degeneration (AMD), a leading cause of
blindness. AMD severity is primarily measured by images of the fundus of the retina and recently developed machine learning
methods can successfully predict AMD progression using image data. However, none of these methods have used both genetic
and image data for predicting AMD progression. Here we used both genotypes and fundus images to predict whether an eye
had progressed to late AMD with a modified deep convolutional neural network. In total, we used 31,262 fundus images and 52
AMD-associated genetic variants from 1,351 subjects from the Age-Related Eye Disease Study, which provided disease sever-
ity phenotypes and fundus images available at baseline and follow-up visits over a period of 12 years. Our results showed that
fundus images coupled with genotypes could predict late AMD progression with an averaged area-under-the-curve value of
0.85 (95% confidence interval 0.83-0.86). The results using fundus images alone showed an averaged area under the receiver
operating characteristic curve value of 0.81(95% confidence interval 0.80-0.83). We implemented our model in a cloud-based
application for individual risk assessment.
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Real study: AMD

Background

. Age-related Macular Degeneration (AMD) is a heritable neurodegenerative disease and a leading
cause of blindness in the elderly population in the United States.

. AMD severity is mainly diagnosed by color fundus images and recent studies have shown the
success of machine learning methods in predicting AMD progression using image data.

. In this study, we jointly used genotypes and fundus images to dynamically predict an eye as having
progressed to late AMD with a modified deep convolutional neural network (CNN).

. Study Population: Caucasian patients from AREDS (Age-Related Eye Disease study)including
genotyping data, longitudinal color fundus photographs, and disease severity assessment over a
period of 12 years.

Normal Retina Late-Stage Dry AMD
(Geographic Atrophy or GA) . Central

a The view from a healthy eye b The view from an eye
suffering AMD

33
https://www.clarityeye.net/age-related-macular-degeneration/



https://www.clarityeye.net/age-related-macular-degeneration/

Real study: AMD

dbEBP

GENOTYPES and PHENOTYPES

National Eye Institute (NEI) Age-Related Eye Disease Study (AREDS)
dbGaP Study Accession: phs000001.v3.p1

Study Description

The Age-Related Eye Disease Study (AREDS) was initially designed as a long-term multi-center, prospective study of the
clinical course of age-related macular degeneration (AMD) and age-related cataract. In addition to collecting natural history
data, AREDS included a clinical trial of high-dose vitamin and mineral supplements for AMD and a clinical trial of high-dose

vitamin supplements for cataract. AREDS participants were 55 to 80 years of age at enrollment and had to be free of any
illness or condition that would make long-term follow-up or compliance with study medications unlikely or difficult. On the basis

of fundus photographs graded by a central reading center, best-corrected visual acuity and ophthalmologic evaluations, 4,757
participants were enrolled in one of several AMD categories, including persons with no AMD.

* AREDS participants were followed on the clinical trials for a median time of 6.5 years. Subsequent to the conclusion
of the clinical trials, participants were followed for an additional 5 years and natural history data were collected.

» Blood samples were also collected from 3,700+ AREDS participants for genetic research. However, not all of the
3,700+ AREDS participants who submitted a blood sample currently have DNA available.

* In November 2010, over 72,000 high quality fundus and lens photographs of 595 AREDS participants were
made available in the AREDS dbGaP.

* In February 2014 over 134,500 high-quality fundus photographs of 4613 AREDS participants were added to the
existing AREDS dbGaP resource.
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Real study: AMD

C B http://www.pitt.edu/~qgiy17/amdprediction.html

Late AMD Fundus Image Prediction

Fundus image + Genotypes -> Current AMD severity + Advanced AMD progression chance X -

(Img -> AMDstate) + Geno -> Risk Feature SNPs

y

Y 2 — Probability of late AMD

ey 8 1 7 progression exceeding
> 0 TN S iul || the inquiry year
- o s ol 6o cnl o s o0 cassdie o o .
i L | e 8 s 0 AMD (011)
severity
Y J (no/ early or intermediate/ late)
CNN
Year 2 Year 3 Year 4 Year 5 Year 6 Year

Genotype File (optional, 52 SNPs): Select File

RUN RESET

Note: The models were trained using only Caucasians with age above 55 years.

Disclaimer: This website is made available to give you a general understanding of fundus images and genetics on AMD risk, not to provide specific clinical advice. 35



Real study: AMD

Table 1| Characteristics of the participants

AREDS Training Test
Subject-level variables 1,351 subjects 1,223 subjects 128 subjects
Baseline age, year (mean +s.d.) 68.8+5.0 68.8+5.0 68.5+4.8
Female (N, %) 750 (55.5) 682 (55.8) 68 (53.1)
Follow-up time, (mean +s.d.) 103+1.6 10.2+17 109+1.0
Baseline smoking status (N, %)
Never smoked 626 (46.3) 566 (46.3) 60 (46.9)
Former smoker 634 (46.9) 576 (471) 58 (45.3)
Current smoker 91(6.7) 81(6.6) 10 (7.8)
Eye-level variables 2,678 eyes 2,422 eyes 256 eyes
Baseline AMD severity score at eye-level
Mean +s.d. 39+32 40+32 39+32
1-3 (N, %) 1,442 (53.8) 1,310 (54.1) 132 (51.6)
4-6 (N, %) 600 (22.5) 528 (21.8) 72(281)
7-8 (N, %) 636 (23.7) 584 (24.) 52 (20.3)
Progressed eyes with baseline severity
1-3 (N, %) 50 (3.5) 48 (3.7) 2(1.5)
4-6 (N, %) 300 (50.0) 260 (49.2) 40 (55.6)
7-8 (N, %) 585 (92.0) 537 (92.0) 48 (92.3)
Observation-level variables
Number of fundus images used for prediction with progression cutoff
2 years 27,499 24,654 2,845
3 years 25,862 23170 2,692
4 years 24,287 21,709 2,578
5 years 22,435 20,041 2,394
6 years 20,240 18,118 2122
7 years 18,066 16,172 1,894 36




Real study: AMD

Img -> Risk

>y
Probability of late AMD

progression exceeding
the inquired year

Probability of late AMD

progression exceeding
the inquired year

(0/1)

= - =
& g z,
4 5 &
2 2 g S e
8 O x o =
2 & 3 ® g
é.. < fax 2
-] ! A
83 g P g2 5 B3
I8 ¥ $3 8 . 89
J & ﬁ‘m”“ ong
' g 552 s &
i 2 T 5
i § N

Chromosome

Nat Genet. 2016 Feb;48(2):134-43. doi: 10.1038/ng.3448
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Real study: AMD

Img -> AMDstate -> Risk

§ % >< >y
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Real study: AMD

True positive rate

True positive rate
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False positive rate

Fig. 1| Receiver operator characteristic curves of the prediction of late AMD progression time exceeding the inquired years for four models.
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Real study: AMD

Visit year c;’:;;‘zﬂﬂt;e Original Saliency maps (true label/predicted probability)
(4.8 years) agh= 0: <2 years 0: <8 years 0: <4 years 0: <5 years 0: <6 years 0: <7 years
1: >2 years 1: =8 years 1: >4 years 1: =5 years 1: =6 years 1: >7 years
(Youden index) (0.69) (0.61) (0.67) (0.50) (0.52) (0.42)

0 4.8
(1/0.95) (1/0.95) (1/0.83) (0/0.27) (0/0.01) (0/0.10)

2 2.8
(1/0.88) (0/0.98) (0/0.46) (0/0.31) (0/0.09) (0/0.19)

4 ) .
(0/0.58) (0/0.80) (0/0.17) (0/0.06) (0/0.00) (0/0.086)
5.9 0

(0/0.03) (0/0.10) (0/0.05) (0/0.05) (0/0.00) (0/0.00)

Fig. 2 | Saliency maps for left eye of subject 1 over 5.9 years. This subject progressed to late AMD after 4.8 years of follow-up.
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Real study: AMD

Time left to

Saliency maps (true label/predicted probability)

s 3 Original
Visit year censored time akics .
(11.1 years) ¢ 0: <2 years 0: <3 years 0: <4 years 0: <5 years 0: <6 years 0: <7 years
1: 22 years 1: 28 years 1: >4 years 1: >5 years 1: >6 years 1: >7 years
(Youden index) (0.69) (0.61) (0.67) (0.50) (0.52) (0.42)
o h .

(1/0.99) (1/0.99) (1/1.00) (1/0.99) (1/1.00) (1/1.00)

1.9 9.2
(1/1.00) (1/0.99) (1/0.99) (1/0.99) (1/1.00) (1/1.00)

3.8 7.3
(1/0.99) (1/1.00) (1/0.99) (1/0.99) (1/1.00) (1/1.00)

5.8 5.3

(1/0.99) (1/1.00) (1/0.99) (1/0.99) (NA/1.00) (NA/1.00)

Fig. 3 | Saliency maps for left eye of subject 2 over the first 5.8 years. This subject was censored after 11.1 years of follow-up.
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Real study: AMD

Time left to late Oiicinal Saliency maps (true label/predicted probability)
Visit year AMD progression =g
(0 years) images 0: <2 years 0: <3 years 0: <4 years : 0: <6 years 0: <7 years
1: >2 years 1: >3 years 1: >4 years o> 1: >6 years 1: >7 years
(Youden index) (0.69) (0.61) (0.67) : (0.52) (0.42)
0 0 -
(0/0.00) (0/0.01) (0/0.07) (0/0.03) (0/0.01) (0/0.06)
) 0 . .
(0/0.01) (0/0.02) (0/0.04) (0/0.05) (0/0.00) (0/0.02)
: 0 .
(0/0.00) (0/0.01) (0/0.00) (0/0.00) (0/0.00) (0/0.00)
) 0 .
(0/0.01) (0/0.01) (0/0.01) (0/0.00) (0/0.00) (0/0.00)
) 0 . .
(0/0.01) (0/0.00) (0/0.01) (0/0.02) (0/0.00) (O 0.00)

Fig. 4 | Saliency maps for left eye of subject 3 over 12 years. This subject developed late AMD before enrollment.



Real study: AMD
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Other options:
AlexNet, GooglLeNet, VGG, ResNet, Inception-ResNet-V2 ...
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Possibilities

PERSPECTIVE nature
ht!ps://dois.org/‘lOJCO38/541588-018-0295-5 genetlcs

A primer on deep learning in genomics

JamesZou©'23* Mikael Huss**, Abubakar Abid?, Pejman Mohammadi®’, Ali Torkamani ©%” and
AmalioTelenti ©67*

Deep learning methods are a class of machine learning techniques capable of identifying highly complex patterns in large data-
sets. Here, we provide a perspective and primer on deep learning applications for genome analysis. We discuss successful
applications in the fields of regulatory genomics, variant calling and pathogenicity scores. We include general guidance for how
to effectively use deep learning methods as well as a practical guide to tools and resources. This primer is accompanied by an

interactive online tutorial.
A  Curate data b select architecture, train < Evaluate d interpret
Sequence Label CNN
[ proiced
. o[
Actual

[o] L FEg
L
[CGGAT]| ision= —1P

[z] Validation T Praolstor TP + FP
o] L1 -

|A TAI Recall =

[I] Test e Feature importance
@ IOIntemaI unit OOutputl

Deep learning workflow in genomics. a, A dataset should be randomly split into training, validation and test sets. The positive and negative examples should be
balanced for potential confounders (for example, sequence content and location) so that the predictor learns salient features rather than confounders. b, The appropriate
architecture is selected and trained on the basis of domain knowledge. For example, CNNs capture translation invariance, and RNNs capture more flexible spatial
interactions. c, True positive (TP), false positive (FP), false negative (FN) and true negative (TN) rates are evaluated. When there are more negative than positive
examples, precision and recall are often considered. d, The learned model is interpreted by computing how changing each nucleotide in the input affects the prediction.

44
Nat Genet. 2019 Jan;51(1):12-18. doi: 10.1038/s41588-018-0295-5.



Possibilities

- genes MbPY)

Review
A Guide on Deep Learning for Complex Trait
Genomic Prediction

Miguel Pérez-Enciso '** and Laura M. Zingaretti >0

Kernel, size=3

Input  Hidden Hidden Hidden Hidden Output
layer  layer 1 layer 2 layer 3 layer 4 layer

Input, SNP

Cr=wiXrt- WXzt WyXy
Co=W Xyt WXt WyX,
Ce= WXk WXy, WX,
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o

Genes (Basel). 2019 Jul 20;10(7). pii: E553. doi: 10.3390/genes10070553.



