

Deep-learning-based Prediction of Late Age Related Macular Degeneration Progression UPMC

Qi Yan^{1,*}, Daniel E. Weeks^{2,3}, Hongyi Xin¹, Heng Huang⁴, Anand Swaroop⁵, Emily Y. Chew⁶, Ying Ding^{3,*}, Wei Chen^{1,2,3,*}

¹Division of Pulmonary Medicine, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, PA; ²Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, PA; ³Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, PA; ⁴Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, PA; ⁵Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD; ⁶Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD; ⁶Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD; ⁶Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD; ⁶Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD; ⁶Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD; ⁶Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD; ⁶Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD; ⁶Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD; ⁶Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD; ⁶Division of Epidemiology and Clinical Applications, National Eye Institute, National Eye Instit

1.9

3.8

5.8

Background

- Age-related Macular Degeneration (AMD) is a heritable neurodegenerative disease and a leading cause of blindness in the elderly population in the United States.
- AMD severity is mainly diagnosed by color fundus images and recent studies have shown the success of machine learning methods in predicting AMD progression using image data.
- We jointly used genotypes and fundus images to dynamically predict an eye as having progressed to late AMD with a modified deep convolutional neural network (CNN).
- Study Population: Caucasian patients from AREDS (Age-Related Eye Disease study)^[1] including <u>genotyping data</u>, <u>longitudinal color fundus</u>

Results (continued)

Table 2. AUC values (95% CI) of the prediction of probability of late-AMD progression exceeding the inquired years for four models

		2 years	3 years	4 years	5 years	6 years	7 years
AUC values	Imaga > Pick*	0.81	0.81	0.81	0.79	0.83	0.84
	Inage -> Misk	(0.79-0.83)	(0.79-0.83)	(0.79-0.83)	(0.78-0.81)	(0.81-0.85)	(0.82-0.86)
	Imaga + Cana > Pick	0.84	0.85	0.83	0.84	0.85	0.85
	Inage + Geno -> Kisk	(0.83-0.86)	(0.83-0.86)	(0.82-0.85)	(0.82-0.85)	(0.83-0.86)	(0.83-0.87)
	$Imaga > \Lambda M Datata# > Diak$	0.81	0.80	0.79	0.82	0.82	0.84
	IIIIaye -> AMDSIale" -> RISK	(0.79-0.83)	(0.78-0.82)	(0.77-0.81)	(0.80-0.84)	(0.80-0.84)	(0.83-0.86)
	(Imago > AMDetato) + Cono > Pick	0.85	0.86	0.86	0.85	0.85	0.85
	(IIIIaye -> AIVIDSIALE) + Genu -> NISK	(0.84-0.87)	(0.84-0.87)	(0.84-0.87)	(0.84-0.87)	(0.84-0.87)	(0.84-0.87)

PITAL OF PITTSBU

• The probability of late-AMD progression exceeding the inquired years.

• # No, early or intermediate, or late AMD (3 levels).

photographs, and disease severity assessment over a period of 12 years.

Method

Img -> AMDstate -> Risk

• This subject progressed to late AMD after 4.8 years of follow-up.

Vicityoor	Time left to censored time (4.8 years)	Original	Saliency maps (true label/predicted probability)							
visityear		images	0: <2 years 1: >=2 years	0: <3 years 1: >=3 years	0: <4 years 1: >=4 years	0: <5 years 1: >=5 years	0: <6 years 1: >=6 years	0: <7 years 1: >=7 years		
		(Youden index)	(0.69)	(0.61)	(0.67)	(0.50)	(0.52)	(0.42)		
0	4.8			it is		ALC: NO				
			(1/0.95)	(1/0.95)	(1/0.63)	(0/0.27)	(0/0.01)	(0/0.10)		
2	2.8									
			(1/0.88)	(0/0.98)	(0/0.46)	(0/0.31)	(0/0.09)	(0/0.19)		
4	0.8					ALC: NO	No.			
			(0/0.58)	(0/0.80)	(0/0.17)	(0/0.06)	(0/0.00)	(0/0.06)		
5.9	0		- AH		New York	Cart -		and the second		
			(0/0.03)	(0/0.10)	(0/0.05)	(0/0.05)	(0/0.00)	(0/0.00)		

• This subject was censored after 11.1 years of follow-up.

Visityear	Time left to censored time (11.1 years)	Original	Saliency maps (true label/predicted probability)						
		images	0: <2 years 1: >=2 years	0: <3 years 1: >=3 years	0: <4 years 1: >=4 years	0: <5 years 1: >=5 years	0: <6 years 1: >=6 years	0: <7 years 1: >=7 years	
		(Youden index)	(0.69)	(0.61)	(0.67)	(0.50)	(0.52)	(0.42)	
0	11.1					STR. BA			

 Convolutional neural network (CNN) of retinal fundus images along with feature SNPs and AMD severity for the prediction of late-AMD progression exceeding certain inquired years.

Results

Table 1. Characteristics of the participants

	AREDS	Training	Test
Subject-level	1,351 subjects	1,223 subjects	128 subjects
Observation-level			
Fundus images used for prediction with progression			
cutoff			
2 years (n)	27,499	24,654	2,845
3 years (n)	25,862	23,170	2,692
4 years (n)	24,287	21,709	2,578
5 years (n)	22,435	20,041	2,394
6 years (n)	20,240	18,118	2,122
7 years (n)	18,066	16,172	1,894

• This subject developed late AMD before enrollment.

References

1. Age-Related Eye Disease Study Research G. The Age-Related Eye Disease Study (AREDS): design implications. AREDS report no. 1. Controlled clinical trials. 1999;20(6):573-600.

2. Qi Yan, Daniel E. Weeks, Hongyi Xin, Heng Huang, Anand Swaroop, Emily Y. Chew, Ying Ding, Wei Chen. "Deep-learning-based Prediction of Late Age-Related Macular Degeneration Progression". medRxiv preprint 19006171.

Implementation and Availability

The prediction models^[2] are available at <u>https://github.com/QiYanPitt/AMDprogressCNN</u>
A web-based application is also available at <u>http://www.pitt.edu/~qiy17/amdprediction.html</u>