

Genome-wide Analysis of Disease Progression in Age-related Macular Degeneration

Children's Qi Yan¹, Ying Ding², Yi Liu^{1,2}, Tao Sun^{1,2}, Lars G. Fritsche³, Traci Clemons⁴, Rinki Ratnapriya⁵, Michael L. Klein⁶, Richard J. Cook⁷, Yu Liu⁸ Ruzong Fan⁹, Lai Wei⁸, Gonçalo R. Abecasis¹⁰, Anand Swaroop⁵, Emily Y. Chew¹¹, AREDS2 research group¹¹, Daniel E. Weeks^{2,12}, Wei Chen^{1,2,12}

Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA; ²Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA; ³Department of Public Health and Nursing, Nor Technology, Trondheim, Norway; ⁴The Emmes Corporation, Rockville, MD; ⁵Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD; niversity of Science and Technology, Trondheim, Norway stitute, Oregon Health & Science University, Portland, Oregon; rovince, China; ⁹Department of Biostatistics, Bioinformatics, an on; ⁷Department of Statistics and Actuarial Science, and Biomathematics, Georgetown University Medic ce, University of Waterloo, Canada; ⁸Zhon edical Center, Washington, DC; ¹⁰Departme ⁸Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang partment of Biostatistics, University of Michigan, Ann Arbor, MI; ¹¹Divisior da. MD: stitutes of Health, B nt of Hu ırah. PA

Background

- Age-related Macular Degeneration (AMD) is a heritable neurodegenerative disease and a leading cause of blindness in the elderly population in the United States.
- Multiple large-scale genetic studies had remarkable successes in identifying disease-susceptibility genes for AMD. However, the genetic causes for AMD progression have not been well studied vet.
- We conducted GWAS for the association of time-to-late AMD (either CNV or GA) accounting for the correlation between two eyes within a subject.
- Study Population: Caucasian patients from AREDS (Age-Related Eye Disease study)[1]

Method

- · We use a Cox proportional hazards regression model.
- To account for the association in the progression times in the two eyes within a subject, robust variance estimates were used.

 $\lambda_{ij}(t|G_i, X_{ij}, PC_i) = \lambda_0(t) \exp\{G_i \alpha + X_{ij} \beta + PC_i \gamma\}$

Based on the uni-variable Cox models, baseline age, smoking ٠ status, and education level were selected as covariates. In addition, the first two principal components were also included.

Results

Table 1. Baseline Characteristics of the AREDS cohort, as previously summarized in Ding et al. [2]

	AREDS
Subject-level variables	N = 2,721 subjects
Age, year (mean ± SD)	68.7 ± 4.9
Female (N, %)	1,527 (56)
Follow-up time, (mean ± SD)	10.3 ± 1.7
Mean (SD)	
Median (range)	
Education (N, %)	
<= high school	906 (33)
> high school	1,814 (67)
Missing	1 (0)
Smoking (N, %)	
Never smoked	1,272 (47)
Former smoker	1,288 (47)
Current smoker	161 (6)
Eye-level Variables	n = 5,017 eyes
Baseline AMD severity score at eye-level	
Mean ± SD	3.0 ± 2.3
1-3 (n, %)	3,125 (62)
4-6 (n, %)	1,293 (26)
7-8 (n, %)	599 (12)

Acknowledgement

This work is supported by the research grant R01EY024226 (PI: Chen W.) from NEI/NIH.

<u>References</u>

- Age-Related Eye Disease Study Research G. The Age-Related Eye Disease Study (AREDS): design implications. AREDS report no. 1. Controlled clinical trials. 1999;20(6):573-600. PubMed PMID: 10588299; PubMed Central PMCID: PMC1473211.
- 2. Ding Y, Liu Y, Yan Q, Fritsche LG, Cook RJ, Clemons T, et al. Bivariate Analysis of Age-Related Macular Degeneration Progression Using Genetic Risk Scores. Genetics. 2017;206(1):119-33. doi: 10.1534/genetics.116.196998. PubMed PMID: 28341650; PubMed Central PMCID: PMCPMC5419464.
- 3. Fritsche LG, Igl W, Bailey JN, Grassmann F, Sengupta S, Bragg-Gresham JL, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet. 2016;48(2):134-43. doi: 10.1038/ng.3448. PubMed PMID: 26691988; PubMed Central PMCID: PMCPMC4745342

Genome-wide association study of AMD progression (either CNV or GA)

of UPMC

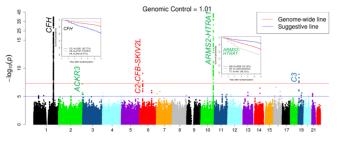
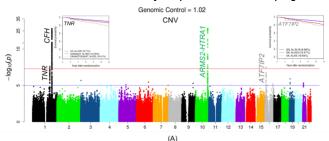



Table 2. List of loci associated with AMD progression identified in AREDS.

1 6										
SNP	Chr	Position	Major/minor allele	MAF	Gene	Without BL severity		Fritsche et al. ^[3] case-control		
						HR	P-value	P-value		
Significant loc										
rs2284665	10	124,226,630	G/T	0.30	ARMS2-HTRA1	2.06	8.1×10 ⁻⁴³	4.0×10 ⁻⁶⁹⁷		
rs10922109	1	196,704,632	C/A	0.33	CFH	0.43	3.5×10 ⁻³⁷	9.6×10 ⁻⁶¹⁸		
rs116503776	6	31,930,462	G/A	0.12	C2-CFB-SKIV2L	0.56	8.1×10 ⁻¹⁰	1.2×10 ⁻¹⁰³		
rs2230199	19	6,718,387	C/G	0.24	C3	1.45	1.2×10 ⁻⁹	3.8×10 ⁻⁶⁹		
Marginally significant novel loci										
rs56072732	2	237,519,496	C/T	0.06	ACKR3	1.71	6.4×10 ⁻⁸	0.497		

Genome-wide association study of specific CNV and GA progression

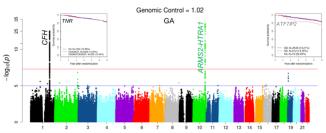


Table 3. Results for rs58978565 in TNR and rs28368872 in ATF7IP2.

SNP	Chr	Position	Major/minor allele	Gene	AMD subtypes	MAF	Without BL severity	
							HR	P-value
rs58978565	1	175,345,602	C/CAGAGT	TNR	GA	0.35	1.00	0.98
					CNV	0.36	1.51	2.3×10 ⁻⁸
rs28368872	16	10,585,350	G/A	ATF7IP2	GA	0.12	1.26	0.03
					CNV	0.12	1.69	2.9×10-8

(B)

Conclusions

We identified four previously-reported susceptibility loci showing genomewide significant association with AMD progression: ARMS2-HTRA1, CFH, C2-CFB-SKIV2L, and C3. Furthermore, we detected association of TNR and ATF7IP2 with progression to CNV but not GA.