Genome-wide Analysis of Disease Progression in Age-related Macular Degeneration

Qi Yan¹, Ying Ding ${ }^{2}$, Yi Liu ${ }^{1,2}$, Tao Sun ${ }^{1,2}$, Lars G. Fritsche ${ }^{3}$, Traci Clemons ${ }^{4}$, Rinki Ratnapriya ${ }^{5}$, Michael L. Klein ${ }^{6}$, Richard J. Cook ${ }^{7}$, Yu Liu ${ }^{8}$
俍 Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA; ²Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA; ${ }^{3}$ Department of Public Health and Nurs 'Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA; ${ }^{2}$ Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA; ${ }^{3}$ Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway; ${ }^{\text {4 }}$ The Emmes Corporation, Rockvile, MD; ${ }^{\text {' Neurobiology }}$ Neurodegeneration and Repair Laboratory, National Eye Institue, National Institutes of Heath, Bethesda, MD; ${ }^{6}$ Casey Eye Institute, Oregon Health \& Science University, Portland, Oregon; ${ }^{\text {TD }}$ Department of Statistics and Actuarial Science, University of Waterloo, Canada; ${ }^{\text {B Z Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, }}$

Background

- Age-related Macular Degeneration (AMD) is a heritable neurodegenerative disease and a leading cause of blindness in the elderly population in the United States.
- Multiple large-scale genetic studies had remarkable successes in identifying disease-susceptibility genes for AMD. However, the genetic causes for AMD progression have not been well studied yet.
- We conducted GWAS for the association of time-to-late AMD (either CNV or GA) accounting for the correlation between two eyes within a subject.
- Study Population: Caucasian patients from AREDS (Age-Related Eye Disease study) ${ }^{[1]}$

Method

- We use a Cox proportional hazards regression model.
- To account for the association in the progression times in the two eyes within a subject, robust variance estimates were used.

$$
\lambda_{i j}\left(t \mid G_{i}, X_{i j}, P C_{i}\right)=\lambda_{0}(t) \exp \left\{G_{i} \alpha+X_{i j} \beta+P C_{i} \gamma\right\}
$$

- Based on the uni-variable Cox models, baseline age, smoking status, and education level were selected as covariates. In addition, the first two principal components were also included.

Results

Table 1. Baseline Characteristics of the AREDS cohort, as previously summarized in Ding et al. [2]

	AREDS
Subject-level variables	$\mathrm{N}=2,721$ subjects
Age, year (mean \pm SD)	68.7 ± 4.9
Female ($\mathrm{N}, \%$)	1,527 (56)
Follow-up time, (mean \pm SD)	10.3 ± 1.7
Mean (SD)	
Median (range)	
Education ($\mathrm{N}, \%$)	
<= high school	906 (33)
$>$ high school	1,814 (67)
Missing	1 (0)
Smoking ($\mathrm{N}, \%$ \%	
Never smoked	1,272 (47)
Former smoker	1,288 (47)
Current smoker	161 (6)
Eye-level Variables	$n=5,017$ eyes
Baseline AMD severity score at eye-level	
Mean \pm SD	3.0 ± 2.3
1-3 (n, \%)	3,125 (62)
4-6 (n, \%)	1,293 (26)
7-8 (n, \%)	599 (12)

Acknowledgement

This work is supported by the research grant R01EY024226 (PI: Chen W.) from NEI/NIH.

References

1. Age-Related Eye Disease Study Research G. The Age-Related Eye Disease Study (AREDS): design implications. AREDS report no. 1. Controlled clinical trials. 1999;20(6):573 600. PubMed PMID: 10588299; PubMed Central PMCID: PMC1473211.
2. Ding Y, Liu Y, Yan Q, Fritsche LG, Cook RJ, Clemons T, et al. Bivariate Analysis of AgeRelated Macular Degeneration Progression Using Genetic Risk Scores. Genetics. 2017;206(1):119-33. doi: 10.1534/genetics.116.196998. PubMed PMID: 28341650; PubMed Central PMCID: PMCPMC5419464.
3. Fritsche LG, IgI W, Bailey JN, Grassmann F, Sengupta S, Bragg-Gresham JL, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet. 2016;48(2):134-43. doi: 10.1038/ng.3448. PubMed PMID: 26691988; PubMed Central PMCID: PMCPMC4745342

Results (continued)

- Genome-wide association study of AMD progression (either CNV or GA)

Table 2. List of loci associated with AMD progression identified in AREDS.

SNP	Chr	Position	Major/minor allele	MAF	Gene	Without BL severity	Fritsche et al. ${ }^{[3]}$ case-control	
Significant loci reported also in consortium case-control studies	HR	P-value	P-value					
rs2284665	10	$124,226,630$	G/T	0.30	ARMS2-HTRA1	2.06	8.1×10^{-43}	4.0×10^{-697}
rs10922109	1	$196,704,632$	C/A	0.33	CFH	0.43	3.5×10^{-37}	9.6×10^{-618}
rs116503776	6	$31,930,462$	G/A	0.12	C2-CFB-SKIV2L	0.56	8.1×10^{-10}	1.2×10^{-403}
rs2230199	19	$6,718,387$	C/G	0.24	C3	1.45	1.2×10^{-9}	3.8×10^{-69}
Marginally significant novel loci								
rs56072732	2	$237,519,496$	C/T	0.06	ACKR3	1.71	6.4×10^{-8}	0.497

- Genome-wide association study of specific CNV and GA progression

Table 3. Results for rs58978565 in TNR and rs28368872 in ATF7IP2.

SNP	Chr	Position	Major/minor allele	Gene	AMD subtypes	MAF	Without BL severity	
							HR	P-value
rs58978565	1	175,345,602	C/CAGAGT	TNR	GA	0.35	1.00	0.98
					CNV	0.36	1.51	2.3×10^{-8}
rs28368872	16	10,585,350	G/A	ATF7IP2	GA	0.12	1.26	0.03
					CNV	0.12	1.69	2.9×10^{-8}

Conclusions

- We identified four previously-reported susceptibility loci showing genomewide significant association with AMD progression: ARMS2-HTRA1, CFH, C2-CFB-SKIV2L, and C3. Furthermore, we detected association of TNR and ATF7IP2 with progression to CNV but not GA.

